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Abstract. We consider a quantum particle constrained to move within a tube of central radius
d embedded in 3-space, subject to Dirichlet boundary conditions. Taking the central axis of the
tube as a reference curve and setting up a locally cylindrical polar coordinate system around this
curve, we derive an exact expression for the effective potential introduced by the imposition of
curvature and torsion. We then employ a minimax method to ascertain a sufficient requirement
for the curvature and torsion to guarantee the existence of a bound state.

1. Introduction

Recent advances in microelectronics and semiconductor microengineering have enabled the
fabrication of reduced-dimensional quantum systems such as quantum wells and quantum
wires [1, 2]. Two-dimensional layered quantum systems such as quantum wells are already
being used in practical applications, for example to construct lasers in compact disc players
and other optoelectronic applications.

One-dimensional systems such as quantum wires, in which a quantum particle is
constrained to move along a one-dimensional trajectory (where the transverse modes are
effectively limited to the ground state by energy considerations) are somewhat more difficult
to fabricate. The advantage of one-dimensional systems is that small-angle scattering
should be greatly diminished in comparison with two-dimensional systems, which would
enable bandgap-engineered structures such as semiconductor lasers to be fabricated with
substantially improved performance.

So far, experimental one-dimensional systems have been manufactured typically by
processing two-dimensional layered quantum systems, such as by evaporative deposition of
patterned metal gates onto a surface to cause electron depletion in certain regions through
application of a negative electrical potential to the gate electrodes. The split-gate device is
an example of how this technique can be successful.

However, to realize properly the advantages of one-dimensional nanostructure
engineering, techniques which allow the fabrication of quantum wires embedded with
torsion in three dimensions will allow processing units with much improved connectivity
to be developed. Freeing quantum wires from the confines of a planar surface will allow
nanostructure devices with new forms to be created. Exner andŠeba [3] suggest that
quantum wires could theoretically be etched in a helical fashion around the surface of a thin
cylindrical rod, thus producing one such new device for which we might coin the phrase
quantum solenoid.
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Several authors [4–6] have modelled the dynamics of a non-relativistic quantum
particle constrained to move along a curve. However, due to the engineering problems
in constructing quantum wires, it is somewhat ambitious at this stage to assume that such
waveguides can be constructed with sufficiently small thickness that the transverse dimension
can be neglected entirely. Modelling of a non-relativistic quantum particle confined to move
along a thin tubular neighbourhood of a curve embedded in 3-space has been previously
considered by several authors [7–12]

With these motivations, we consider here the quantum dynamics of a particle constrained
to move within a tube of mesoscopic, but not negligible, thicknessd embedded with torsion
in 3-space.

Further, we establish some results regarding the effect of torsion on the existence of
bound states for such a system by use of the minimax technique.

2. The coordinate system

Let a reference curveC be described in 3-space by a smooth vector-valued functionr of
arc-lengthq1:

C = {r(q1) : q1 ∈ R}. (1)

Along this reference curveC, the unit tangent vector is given by the first derivative ofr

t(q1) = r′(q1)

‖r′(q1)‖ = r′(q1) (2)

where we note that this choice ofq1 as arc length requires that‖r′(q1)‖ = 1. We will assume
thatC is suitably smooth so as to ensure thatr(q1) is twice differentiable everywhere. Then
we obtain the curvatureκ(q1) of C from the second derivative ofr,

κ(q1) = ‖r′′(q1)‖. (3)

We impose the conditionκ(q1)d � 1 in order to guarantee smoothness of the boundary of
the tube. We defineκ+ = supq1

κ(q1), whereκ+d � 1.
Unit normal and binormal vectors are then defined in the usual manner:

n(q1) = t′(q1)

κ(q1)
(4)

b(q1) = t(q1) ∧ n(q1) (5)

so that the set{t,n, b} forms a right-handed orthonormal triad. The torsionτ(q1) of C is
then given by one of the Frenet–Serret formulae,

b′(q1) = −τ(q1) n(q1) (6)

and characterizes the tendency for the curve to twist out of the osculating plane (the plane
of t and n). We define the total twistingT (q1) of C relative to a reference pointr(q0)

along the curve by

T (q1) =
∫ q1

q0

τ(u) du. (7)

For the purposes of the analytical results in section 4, we will impose certain decay
assumptions onκ(q1) and τ(q1). Since these results do not alter the validity of the
effective potential term we derive in section 3, we postpone the introduction of these decay
assumptions until they are required.
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The position vectorR of an arbitrary point in the vicinity ofC can be expressed in terms
of three coordinatesq1, q2, θ , where the first two of these coordinates have the dimension
of length and the third is a dimensionless angular coordinate:

R(q1, q2, θ) = r(q1)+ q2 cos(θ − T (q1))n(q1)+ q2 sin(θ − T (q1))b(q1) (8)

= r(q1)+ q2Cn(q1)+ q2Sb(q1) (9)

using the shorthandC = cos(θ − T (q1)), S = sin(θ − T (q1)).
From (9) we have

‖dR‖2 = [1 − κq2 cos(θ − T (q1))]
2 dq2

1 + dq2
2 + q2

2 dθ2 (10)

so that q1, q2 and θ are a set of orthogonal curvilinear coordinates with scale factors
h1 = 1 − κq2 cos(θ − T (q1)), h2 = 1 andhθ = q2. Note that we have a singularity in
the coordinate system whenq2 = 0, i.e. for points directly onC. We then construct the
Laplace–Beltrami operator

∇2 = 1

h1h2hθ

[
∂

∂q1

(
h2hθ

h1

∂

∂q1

)
+ ∂

∂q2

(
h1hθ

h2

∂

∂q2

)
+ ∂

∂θ

(
h1h2

hθ

∂

∂θ

)]
(11)

which reduces here to

∇2 = 1

h2
1

∂2

∂q2
1

− 1

h3
1

∂h1

∂q1

∂

∂q1
+ ∂2

∂q2
2

+
(

1

q2
+ 1

h1

∂h1

∂q2

)
∂

∂q2
+ 1

q2
2

∂2

∂θ2
+ 1

h1q
2
2

∂h1

∂θ

∂

∂θ
. (12)

Note that if κ(q1) = 0, thenh1 reduces to unity and (12) reduces to the usual cylindrical
Laplacian. Since (12) only involves the single scale factorh1, we follow Exner [8] and use
the notationh = h1 for brevity.

3. The Hamiltonian and the effective potential

Our objective is to solve the Schrödinger equation for a free quantum particle of effective
massm∗, written in the form

H�ψ(q1, q2, θ) ≡ −h̄2

2m∗ ∇2ψ(q1, q2, θ) = Eψ(q1, q2, θ) (13)

for q1 ∈ R, q2 ∈ [0, d] and θ ∈ [0, 2π), whereH� is the Hamiltonian for the quantum
waveguide subject to Dirichlet boundary conditions

ψ(q1, d, θ) = 0 ∀q1 ∈ R, θ ∈ [0, 2π). (14)

We now make the substitution

ψ(q1, q2, θ) = h−1/2χ(q1, q2, θ) (15)

in order to transform the sizes of the volume elements dV in this curvilinear coordinate
system back into the usual volume element in straightened cylindrical polar coordinates.
This unitary transformation straightens out the coordinate system in a way which allows us to
decompose the kinetic energy component of the Hamiltonian into a longitudinal component
and a transverse component. The price of this simplification of the kinetic part of the
Hamiltonian is that in the transformed coordinate system, an effective potential energy term
must be introduced.

Constructing the HamiltonianH0 for this system by transforming (13) using (12) and
(15), we have

H0χ(q1, q2, θ) = Eχ(q1, q2, θ) (16)
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whereH0 is given by

H0χ = −h̄2

2m∗

[
∂

∂q1

(
1

h2

∂χ

∂q1

)
+ ∂2χ

∂q2
2

+ 1

q2

∂χ

∂q2
+ 1

q2
2

∂2χ

∂θ2

]
+ Veff(q1, q2, θ)χ (17)

subject to the imposition of an effective potential term in accordance with that of Exner [8]

Veff(q1, q2, θ) = −h̄2

2m∗

(
κ2

4h2
− 1

2h3

∂2h

∂q2
1

+ 5

4h4

(
∂h

∂q1

))
(18)

which we can express in terms of curvature and torsion as

Veff = −h̄2

2m∗

(
κ2

4(1 − κq2C)2
+ q2([κ ′′ − κτ 2]C + [κτ ′ + 2κ ′τ ]S)

2(1 − κq2C)3
+ 5

4

q2
2(κτS + κ ′C)2

(1 − κq2C)4

)
.

(19)

It is apparent from (19) that the particle energetically favours motion towards the edge of
the tube, i.e. asq2 → d, because the contribution of the first and third terms in (19) towards
the potential energy for the quantum particle are increasingly attractive for increasing values
of q2. This can be seen by taking Taylor series expansions aboutq2 = 0 for the various
terms. Hence, the thin and slowly twisting tube approximation [12] is difficult to justify if
the waveguide itself isnot thin or slowly twisting.

4. Existence of bound states

In order to establish criteria by which we can show when such a twisted quantum waveguide
definitely has at least one bound state, we construct fromH0 new self-adjoint operatorsH+
andH− with identical essential spectraσess(H+) = σess(H0) = σess(H−) = [E∞,∞), and
for whichH− 6 H0 6 H+ in the sense of quadratic forms:

〈ψ |H−ψ〉 6 〈ψ |H0ψ〉 ∀ψ ∈ Q(H−) ∩Q(H0) (20)

〈ψ |H0ψ〉 6 〈ψ |H+ψ〉 ∀ψ ∈ Q(H0) ∩Q(H+) (21)

whereQ(H) is the form domain ofH . By the minimax principle [13], we then have

Proposition 4.1. If H+ has an eigenvalueE+
0 < E∞ thenH0 will necessarily have an

eigenvalueE0 for whichE0 6 E+
0 . Furthermore, ifH− has no eigenvalues belowE∞, then

H0 will have no bound states.
From (17),H0 can be decomposed into a sum of longitudinal and transverse kinetic

energy operators, plus the effective potential

H0 = H12 +H2 + Veff (22)

where the longitudinal component of the Hamiltonian

H12 = −h̄2

2m∗

[
∂

∂q1

(
1

h2

∂

∂q1

)]
(23)

depends on the curvature and torsion ofC and upon the transverse coordinatesq2 and θ
through the presence ofh. However, the transverse component of the Hamiltonian

H2 = −h̄2

2m∗

[
∂2

∂q2
2

+ 1

q2

∂

∂q2
+ 1

q2
2

∂2

∂θ2

]
(24)

is the same differential operator as for a straight cylindrical quantum waveguide, and hence
admits the same transverse mode eigenfunctions.
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We constructH+ andH− by defining suitable upper and lower boundsV+(q1) and
V−(q1) for the effective potential,

V−(q1) 6 Veff(q1, q2, θ) 6 V+(q1) ∀q1, q2 ∈ R, θ ∈ [0, 2π ] (25)

and suitable self-adjoint operatorsH±
1 for whichH−

1 6 H12 6 H+
1 in the form sense on a

common core. We then set

H± = H±
1 +H2 + V±. (26)

It remains only to specifyV+(q1), V−(q1) andH±
1 .

Proposition 4.2. Let µ(q1, q2, θ) = h−1 = [1 − κ(q1)q2 cos(θ − T (q1))]−1. Then there
exist constantsµ− = (1 + κ+d)−1 andµ+ = (1 − κ+d)−1, whereκ+ = supq1

κ(q1), such
that

µn− 6 µn(q1, q2, θ) 6 µn+ ∀q1 ∈ R, q2 ∈ [0, d], θ ∈ [0, 2π ], n > 1. (27)

Theorem 4.3. The operatorsH±
1 defined by

H±
1 = −h̄2

2m∗µ
2
±
∂2

∂q2
1

(28)

satisfyH−
1 6 H12 6 H+

1 , in the form sense on a common core.

Proof. We will show only that〈ψ |H+
1 ψ〉 > 〈ψ |H12ψ〉, for it follows in the same manner

that 〈ψ |H12ψ〉 > 〈ψ |H−
1 ψ〉.

Let ψ ∈ Q(H+
1 ) ∩Q(H12). Then

〈ψ |H+
1 ψ〉 − 〈ψ |H12ψ〉 = h̄2

2m∗

[〈
ψ

∣∣∣∣ ∂∂q1

(
µ2 ∂ψ

∂q1

)〉
− µ2

+

〈
ψ

∣∣∣∣∂2ψ

∂q2
1

〉]
= h̄2

2m∗

∫ 2π

0

∫ d

0

[ ∫ ∞

−∞
ψ
∂

∂q1

(
µ2 ∂ψ

∂q1

)
dq1 − µ2

+

∫ ∞

−∞
ψ
∂2ψ

∂q2
1

dq1

]
dq2 dθ

= h̄2

2m∗

∫ 2π

0

∫ d

0

[ ∫ ∞

−∞
ψ

′
(µ2

+ − µ2)ψ ′ dq1 − [ψ(µ2
+ − µ2)ψ ′]∞−∞

]
dq2 dθ

= h̄2

2m∗

∫ 2π

0

∫ d

0

∫ ∞

−∞
ψ

′
(µ2

+ − µ2)ψ ′ dq1 dq2 dθ

= 〈ψ ′|(µ2
+ − µ2)|ψ ′〉 > 0 by proposition 4.2.

�

Theorem 4.4. The following potentialsV±(q1) satisfy (25), where we use max{a, b} =
1
2[a + b + |a − b|]

V+(q1) = −h̄2

2m∗

(
κ2

4(1 + κ+d)2
− d

2(1 − κ+d)3
max{|κ ′′ − κτ 2|, |κτ ′ + 2κ ′τ |}

)
(29)

V−(q1) = −h̄2

2m∗

(
κ2

4(1 − κ+d)2
+ d

2(1 − κ+d)3
max{|κ ′′ − κτ 2|, |κτ ′ + 2κ ′τ |}

+5

4

d2

(1 − κ+d)4
max{(κτ)2, (κ ′)2}

)
. (30)
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Proof. This is a simple exercise in inequalities. We will demonstrate thatVeff(q1, q2, θ) >
V−(q1); the proof thatVeff(q1, q2, θ) 6 V+(q1) proceeds in the same manner. Write (19) as

Veff = −h̄2

2m∗ (
1
4κ

2µ2 + 1
2q2µ

3([κ ′′ − κτ 2]C + [κτ ′ + 2κ ′τ ]S)+ 5
4q

2
2µ

4(κτS + κ ′C)2)

By proposition 4.2, we have

Veff > −h̄2

2m∗

(
1
4κ

2µ2
+ + 1

2µ
3
+d sup

θ∈[0,2π ]
([κ ′′ − κτ 2]C + [κτ ′ + 2κ ′τ ]S)

+ 5
4µ

4
+d

2 sup
θ∈[0,2π ]

((κτS + κ ′C)2)
)

= −h̄2

2m∗

(
1
4κ

2µ2
+ + 1

2µ
3
+d max{|κ ′′ − κτ 2|, |κτ ′ + 2κ ′τ |}

+ 5
4µ

4
+d

2 max{(κτ)2, (κ ′)2}
)

= V−(q1).

�
Having characterized the operatorsH±

1 and the potentialsV±, we are now able to
investigate the spectrum ofH±. It is here that we must impose decay assumptions upon
κ(q1) andτ(q1) which guarantee thatV±(q1) is locally square integrable,

∫ ∞
−∞ V+(q1)(1 +

|q1|) dq1 < ∞ and that

lim
a→∞

∫ a+1

a

|V±(q1)|2 dq1 = 0 asa → ±∞. (31)

With this, we haveσess(H
±
1 + V±) = [0,∞) by theorem 3.8.1 of [14]. Then we use (26)

andσess(H2) = ∅ to obtain

Proposition 4.5. H± has an eigenvalueE±
0 < E∞ iff H±

1 +V± has a negative eigenvalue.
Results regarding the existence of bound states for a quantum tubular waveguide

can now be derived using methods from one-dimensional Schrödinger operator analysis.
Unfortunately, it is pointless to try to prove thatH0 has no bound states by demonstrating
thatH−

1 + V− does not have a negative eigenvalue and appealing to propositions 4.1 and
4.5. The reason for this is that such a proof would involve assuming the existence of a
ψ for which 〈ψ |(H−

1 + V−)ψ〉 < 0, and working to a contradiction. However, this is not
feasible because in constructing a lower boundV− for the effective potentialVeff, we have
had to take into account attractive terms inVeff which are not compensated for everywhere
by the repulsive contribution from the more complicated torsion-dependent terms, and thus
the lower boundV− will still admit bound states, as can be seen from (30).

Hence the best we can do is to demonstrate how the imposition of torsion weakens the
minimax argument for the existence of curvature-induced bound states in tubular quantum
waveguides which are not thin and slowly twisting. This result is applicable to the question
of whether the imposition of torsion can affect the existence of bound states when the
curvature does not have compact support.

Theorem 4.6. If

d

2
[1 + κ+d]2

∫ ∞

−∞
max{|κ ′′ − κτ 2|, |κτ ′ + 2κ ′τ |} dq1 <

[1 − κ+d]3

4

∫ ∞

−∞
κ2(q1) dq1 (32)

thenH0 has a bound state.
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Proof. From propositions 4.1 and 4.5 and the decay assumptions uponκ(q1) andτ(q1), it
suffices to show that

∫ ∞
−∞ V+(q1)dq1 < 0. The proof follows from (29). �

In the case whereτ = 0, this reduces to the condition expressed by equation (4.5b)
in [3]. Note that the left-hand side of the inequality in (32) has the potential to increase
for certain conditions ofτ , whereas the right-hand side depends purely upon the curvature
κ. This result is interesting in that it suggests, though of course it does not prove, that
at least in the case of quantum waveguides for which the strict decay requirements on the
curvature and torsion of Goldstone and Jaffe [15] do not hold, the torsion can act to counter
the tendency of the curvature to induce bound states, a result seen before in the case of
quantum strip waveguides [16]. We give an example below of a twisted quantum solenoid,
where we can guarantee the existence of a bound state, subject to certain restrictions on the
magnitude of the torsion.

ξ

10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

γ =0

 γ = 0.001

 γ = 0.005

 γ = 0.01

f

Figure 1. f (ξ, γ ) versusξ , for small values ofγ .
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Example 4.7. Suppose we have a quantum solenoid—a tubular waveguide of radiusd with
constant curvatureκ and torsionτ along a lengthl, connected to straight waveguides at
either end. The effective potential vanishes on the straight waveguides, therefore in order
to demonstrate the existence of a bound state, it suffices to show that

d

2
[1 + κd]2

∫ l

0
κτ 2 dq1 <

[1 − κd]3

4

∫ l

0
κ2 dq1. (33)

Using the dimensionless variablesξ andγ , defined byξ = κd and τ = γ κ, we have the
following condition for the existence of a bound state:

f (ξ, γ ) = (1 − ξ)3 − 2ξγ 2(1 + ξ)2 > 0. (34)

Graphingf (ξ, γ ) as a function ofξ for several small values ofγ , we can see that except in
the case whereκ = 0, condition (34) fails to be satisfied whenγ 2 exceeds a certain threshold
γ 2

0 . Note that for curved quantum waveguides with either small or vanishing torsion and
non-vanishing curvature, (34) guarantees the existence of a bound state, in agreement with
[8] and [15].

Obtaining γ0 by solving f (ξ, γ0) = 0, we can obtain the critical torsionγ0 for any
non-vanishing value ofξ :

γ 2
0 = 1

2

(1 − ξ)3

ξ(1 + ξ)2
. (35)

The effect of increasing the torsion of such quantum solenoids while keeping the curvature
constant is to require us to fabricate thinner quantum wires should we wish to guarantee a
bound state in such a device, which we expect to show up as a physical resonance. Such
quantum mechanical analogues of wound inductors are worthy of further investigation, in
that they could be expected to have interesting physical properties.

The fact that the imposition of torsion has only a small effect in the case of thin and
slowly twisting tubes, as noted by previous authors [10–12, 15], makes the question of the
effect of torsion on curvature-induced bound states in a more general class of quantum
waveguides a somewhat difficult one. In our introduction, we have explained why practical
considerations render this question worthy of investigation. Our analysis in this work does
not prove that no bound states exist ifτ is sufficiently large, for a waveguide with given
curvature, but we believe our preliminary result that the imposition of torsion weakens the
argument for the existence of bound states opens the question for further consideration, and
adds to its interest.
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